# Probability and Random Processes EES 315

#### Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 7 Random Variables



#### **Office Hours:**

Check Google Calendar on the course website. Dr.Prapun's Office: 6th floor of Sirindhralai building, BKD

#### Chapter 5 vs. Chapter 7

- Chapter 5: Finding **probability of an event** Before the midterm, we studied how to find the probability of any event *A* by adding the probabilities of the outcomes inside *A*.
  - Ex. When  $A = \{a, b\}$ , we can calculate the probability of A by  $P(A) = P(\{a, b\}) = P(\{a\}) + P(\{b\})$
- Chapter 7: Finding probability involving a random variable

#### Review: An example in Chapter 5

When we say "probability of us", we actually mean " $P(\{u\})$ "  $P(\{u\})$ Example 5.7. A random experiment can result in one of the outcomes  $\{a, b, c, d\}$  with probabilities (0.1) (0.3) (0.5), and (0.1), respec- $P(A) = P(\{a, b\}) = P(\{a\}) + P(\{b\}) = 0.1 + 0.5 = 0.9$   $P(C) = P(\{d\}) = 0.1 + 0.5 = 0.9$ tively. Let A denote the event  $\{a, b\}$ , B the event  $\{b, c, d\}$ , and C

#### Review: Steps we used in CH5

To find the probability of an event:

- 1. Identify the sample space  $\Omega$  and the probability  $P(\{\omega\})$  for each outcome  $\omega$ .
- 2. Identify all the outcomes inside the event under consideration.

 $P(B) = P(\{b,c,d\}) = P(\{b\}) + P(\{c\}) + P(\{d\}) = 0.5 + 0.5 + 0.1 = 0.9$ 

3. Add the probability  $P(\{\omega\})$  of the outcomes from the previous step.

## Chapter 5 vs. Chapter 7

- Chapter 5: Steps to find the **probability of an event** 
  - 1. Identify the sample space  $\Omega$  and the probability  $P(\{\omega\})$  for each outcome  $\omega$ .
  - 2. Identify all the outcomes inside the event under consideration.
  - 3. Add the probability  $P(\{\omega\})$  of the outcomes from the previous step.
- Chapter 7: Steps to find probability involving RV
  ?

## Chapter 7

• Crucial Skill 7.1: Find probability involving RV when the RV is defined as a function of outcomes

#### [7.13] Steps to find probability involving RV

when the RV is defined as a function of outcomes

Ex.  $X(\omega) = \omega$   $Y(\omega) = (\omega - 3)^2$  $Z(\omega) = \sqrt{Y(\omega)}$  Usually given as a statement about the RV Ex. X > 3X = 3|X| < 2

- 1. Identify the sample space  $\Omega$  and the probability  $P(\{\omega\})$  for each outcome  $\omega$ .
- 2. Consider the given statement. Find the values of  $\omega$  that make the RV satisfy the given statement.
  - To do this, consider the statement, substitute the RV in the statement by its definition, and solve for  $\omega$ .
- 3. Add the probability  $P(\{\omega\})$  of the outcomes from the previous step.

#### Example 7.11b

• Roll a fair dice. Let  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .

• Define 
$$Y(\omega) = (\omega - 3)^2$$
. Find  $P[Y = 4]$ .

•  $\Omega$  is given. The dice is fair; therefore and the probability  $P(\{\omega\}) = \frac{1}{6}$  for each outcome  $\omega$  inside  $\Omega$ .

Method 1:

The statement under consideration is "Y = 4".

From  $Y(\omega) = (\omega - 3)^2$ ,  $Y(\omega) = 4$  occurs when  $\omega = 1$  or 5. Therefore,  $P[Y = 4] = P(\{1\}) + P(\{5\}) = \frac{2}{6} = \frac{1}{2}$ 

# [7.10] The connection between Chapter 5 and Chapter 7

- Probability involving RV is expressed in the form P[some statement(s) about X]
- Technically, when we write

[some statement(s) about *X*],

we are actually defining an event

A = the event containing outcomes  $\omega$  that make  $X(\omega)$  satisfy the given statement(s)

• Now that we have an event, we can apply the steps in Chapter 5 to find P(A).

#### Example 7.11b

• Roll a fair dice. Let  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .

• Define 
$$Y(\omega) = (\omega - 3)^2$$
. Find  $P[Y = 4]$ .

•  $\Omega$  is given. The dice is fair; therefore and the probability  $P(\{\omega\}) = \frac{1}{6}$  for each outcome  $\omega$  inside  $\Omega$ .

Method 1:

The statement under consideration is "Y = 4".

From  $Y(\omega) = (\omega - 3)^2$ ,  $Y(\omega) = 4$  occurs when  $\omega = 1$  or 5.

Therefore,  $P[Y = 4] = P(\{1\}) + P(\{5\}) = \frac{2}{\epsilon} = \frac{1}{2}$ 

Method 2:

$$[Y = 4] = \{\omega: Y(\omega) = 4\} = \{\omega: (\omega - 3)^2 = 4\} = \{1, 5\}$$
$$P[Y = 4] = P([Y = 4]) = P(\{1, 5\}) = P(\{1\}) + P(\{5\}) = \frac{2}{6} = \frac{1}{3}$$

3

10

## Chapter 7

- Crucial Skill 7.1: Find probability involving RV when the RV is defined as a function of outcomes.
- Skill 7.2: Know the difference between X and x.
- Crucial Skill 7.3: Determine whether a set is a support of a given RV.